Geomechanics.io

  • Free Tools
Sign UpLog In

Geomechanics.io

Geomechanics, Streamlined.

© 2026 Geomechanics.io. All rights reserved.

Geomechanics.io

CMRR-ioGEODB-ioHYDROGEO-ioQCDB-ioFree Tools & CalculatorsBlogLatest Industry News

Industries

MiningConstructionTunnelling

Company

Terms of UsePrivacy PolicyLinkedIn
    Research
    Sustainability
    Projects

    Indium from mine waste: process design and project notes for Australia’s solar sector

    November 20, 2025|

    Reviewed by Joe Ashwell

    Indium from mine waste: process design and project notes for Australia’s solar sector

    First reported on Australian Mining

    30 Second Briefing

    Indium recovered from existing mine waste streams could underpin a domestic Australian solar PV manufacturing sector, with a new study pointing to tailings from zinc and lead operations as a major untapped source. Researchers note that indium is a key component in indium tin oxide (ITO) coatings for high‑efficiency thin‑film cells, yet Australia currently exports concentrates and imports finished solar modules. The work signals opportunities for retrofitting hydrometallurgical circuits at established base‑metal plants to extract indium, adding revenue while reducing long‑term tailings liabilities.

    Technical Brief

    • Study models indium recovery from zinc–lead tailings using hydrometallurgical reprocessing scenarios at existing sites.
    • Researchers used mine production statistics, tailings tonnages and mineral processing flow sheets as primary data sources.
    • Analysis considers spatial distribution of suitable tailings facilities across Australian zinc and lead operations.
    • Work evaluates compatibility of indium extraction with current concentrator and refinery circuits to minimise new capital.
    • Authors assess potential reduction in long-term tailings liabilities when indium-bearing waste streams are reprocessed.
    • Practical application includes integrating indium solvent-extraction–electrowinning steps into brownfield base-metal plants.
    • Scope is limited to indium associated with zinc–lead operations; other host systems are not quantified.
    • Findings mainly provide strategic resource estimates; detailed plant-level feasibility and metallurgical testwork remain outside scope.

    Our Take

    Indium barely features in our recent Mining coverage compared with battery metals, so a focus on Australia suggests researchers are probing niche critical-metal streams beyond the usual lithium–nickel–cobalt set.

    For Australia, positioning indium recovery from mine waste could dovetail with existing base-metal operations, potentially giving operators a route to monetise tailings while improving ESG metrics under the ‘Sustainability’ project tag.

    Research-led pieces in our database tagged both ‘Research’ and ‘Projects’ often precede pilot-scale trials, so any lab work on indium extraction from waste streams may quickly translate into small demonstration plants at Australian mine sites.

    Geotechnical Software for Modern Teams

    Centralise site data, logs, and lab results with GEODB-io, CMRR-io, and HYDROGEO-io.

    No credit card required.

    • Save and export unlimited calculations
    • Advanced data visualisation
    • Generate professional PDF reports
    • Cloud storage for all your projects

    Prepared by collating external sources, AI-assisted tools, and Geomechanics.io’s proprietary mining database, then reviewed for technical accuracy & edited by our geotechnical team.

    Related Articles

    Global battery demand and Australian lithium: processing shift for mine engineers
    Mining
    about 4 hours ago

    Global battery demand and Australian lithium: processing shift for mine engineers

    Surging global demand for lithium-ion batteries for electric vehicles and grid storage is pushing Australia to move beyond spodumene concentrate exports into domestic refining and cathode‑grade chemical production. Industry proposals centre on converting hard‑rock feed into battery‑grade lithium hydroxide and carbonate in Western Australia, leveraging existing Tier‑1 deposits and port infrastructure but facing high energy costs, skills shortages and permitting timelines. For miners and process engineers, the shift implies greater focus on impurity control, reagent optimisation and integration of hydrometallurgical circuits with upstream mine planning.

    Bengalla growth for New Hope: strip mine sequencing and design notes for planners
    Mining
    about 4 hours ago

    Bengalla growth for New Hope: strip mine sequencing and design notes for planners

    New Hope Group has lifted coal output across its Australian assets and is advancing growth plans at the Bengalla thermal coal mine in the Hunter Valley, where it holds an 80 per cent interest alongside Mitsui, Taipower and J-Power. The open-cut operation, which typically produces export-quality thermal coal for Asian power utilities via the Port of Newcastle, is the company’s key near-term expansion focus. For mine planners and geotechs, any Bengalla growth path will centre on additional strip mining, dragline and truck–shovel sequencing, and associated waste dump and haul road reconfiguration.

    Mining smarter with AI and data: edge network design notes for engineers
    Mining
    about 5 hours ago

    Mining smarter with AI and data: edge network design notes for engineers

    Australian miners are hitting a data wall as high‑bandwidth sensors, autonomous fleets and video streams overwhelm traditional cloud links, pushing operations towards private LTE networks and on‑site edge computing. Vendors such as Vocus are pairing Starlink Business Rural satellite backhaul with 4G/5G private LTE to keep haul trucks, crushers and fixed plant connected in real time, even on remote pits and waste dumps. For engineers, this shift means designing networks and control systems around low‑latency, on‑site processing for fleet dispatch, collision avoidance and condition monitoring rather than centralised data centres.

    Related Industries & Products

    Mining

    Geotechnical software solutions for mining operations including CMRR analysis, hydrogeological testing, and data management.

    Construction

    Quality control software for construction companies with material testing, batch tracking, and compliance management.

    CMRR-io

    Streamline coal mine roof stability assessments with our cloud-based CMRR software featuring automated calculations, multi-scenario analysis, and collaborative workflows.

    QCDB-io

    Comprehensive quality control database for manufacturing, tunnelling, and civil construction with UCS testing, PSD analysis, and grout mix design management.

    HYDROGEO-io

    Comprehensive hydrogeological testing platform for managing, analysing, and reporting on packer tests, lugeon values, and hydraulic conductivity assessments.

    AllGeotechnicalMiningInfrastructureMaterialsHazardsEnvironmentalSoftwarePolicy